Regulatory interdependence of cloned epithelial Na+ channels and P2X receptors.

نویسندگان

  • Scott S Wildman
  • Joanne Marks
  • Linda J Churchill
  • Claire M Peppiatt
  • Ahmed Chraibi
  • David G Shirley
  • Jean-Daniel Horisberger
  • Brian F King
  • Robert J Unwin
چکیده

Epithelial Na+ channels (ENaC) coexist with a family of ATP-gated ion channels known as P2X receptors in the renal collecting duct. Although ENaC is itself insensitive to extracellular ATP, tubular perfusion of ATP can modify the activity of ENaC. To investigate a possible regulatory relationship between P2X receptors and ENaC, coexpression studies were performed in Xenopus oocytes. ENaC generated a persistent inward Na+ current that was sensitive to the channel blocker amiloride (I(am-s)). Exogenous ATP transiently activated all cloned isoforms of P2X receptors, which in some cases irreversibly inhibited I(am-s). The degree of inhibition depended on the P2X receptor subtype present. Activation of P2X2, P2X(2/6), P2X4, and P2X(4/6) receptor subtypes inhibited I(am-s), whereas activation of P2X1, P2X3, and P2X5 receptors had no significant effect. The degree of inhibition of I(am-s) correlated positively with the amount of ionic charge conducted by P2X receptor subtypes. ENaC inhibition required Na+ influx through I(am-s)-inhibiting P2X ion channels but also Ca2+ influx through P2X4 and P2X(4/6) ion channels. P2X-mediated inhibition of I(am-s) was found to be due to retrieval of ENaC from the plasma membrane. Maximum amplitudes of ATP-evoked P2X-mediated currents (I(ATP)) were significantly increased for P2X2, P2X(2/6), and P2X5 receptor subtypes after coexpression of ENaC. The increase in I(ATP) was due to increased levels of plasma membrane-bound P2X receptor protein, suggesting that ENaC modulates protein trafficking. In summary, ENaC was downregulated by the activation of P2X2, P2X(2/6), P2X4, and P2X(4/6) receptors. Conversely, ENaC increased the plasma membrane expression of P2X2, P2X(2/6), and P2X5 receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basolateral P2X4-like receptors regulate the extracellular ATP-stimulated epithelial Na+ channel activity in renal epithelia.

Extracellular ATP initiates potent effects on sodium transport across renal epithelia through membrane-associated purinergic receptors. Dependent on the location of these receptors, ATP either inhibits or stimulates sodium reabsorption. Using A6 cells, transepithelial electrical resistance measurements, and scanning ion conductance microscopy, we have identified the purinergic receptors involve...

متن کامل

P2X receptors: epithelial ion channels and regulators of salt and water transport.

When the results from electrophysiological studies of renal epithelial cells are combined with data from in vivo tubule microperfusion experiments and immunohistochemical surveys of the nephron, the accumulated evidence suggests that ATP-gated ion channels, P2X receptors, play a specialized role in the regulation of ion and water movement across the renal tubule and are integral to electrolyte ...

متن کامل

ATP stimulates sympathetic transmitter release via presynaptic P2X purinoceptors.

ATP is a fast transmitter in sympathetic ganglia and at the sympathoeffector junction. In primary cultures of dissociated rat superior cervical ganglion neurons, ATP elicits noradrenaline release in an entirely Ca2+-dependent manner. Nevertheless, ATP-evoked noradrenaline release was only partially reduced (by approximately 50%) when either Na+ or Ca2+ channels were blocked, which indicates tha...

متن کامل

Distribution of the purinegic receptors P2X(4) and P2X(6) during rat gut development.

The purinergic receptors P2X(4) and P2X(6) are ion channels activated by ATP. These receptors are present in the gastrointestinal tract, and they are involved in synaptic transmission, taste sensation, and pain, among other functions. In this work, we studied the distribution of P2X(4) and P2X(6) receptors in proximal and distal regions of the gut newborn and adult rats. Using immunohistochemis...

متن کامل

RNA interference targeted to multiple P2X receptor subtypes attenuates zinc-induced calcium entry.

A postulated therapeutic avenue in cystic fibrosis (CF) is activation of Ca(2+)-dependent Cl(-) channels via stimulation of Ca(2+) entry from extracellular solutions independent of CFTR functional status. We have shown that extracellular zinc and ATP induce a sustained increase in cytosolic Ca(2+) in human airway epithelial cells that translates into stimulation of sustained secretory Cl(-) tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 16 9  شماره 

صفحات  -

تاریخ انتشار 2005